BMP restricts stemness of intestinal Lgr5+ stem cells by directly suppressing their signature genes
نویسندگان
چکیده
The intestinal epithelium possesses a remarkable self-renewal ability, which is mediated by actively proliferating Lgr5+ stem cells. Bone morphogenetic protein (BMP) signalling represents one major counterforce that limits the hyperproliferation of intestinal epithelium, but the exact mechanism remains elusive. Here we demonstrate that epithelial BMP signalling plays an indispensable role in restricting Lgr5+ stem cell expansion to maintain intestinal homeostasis and prevent premalignant hyperproliferation on damage. Mechanistically, BMP inhibits stemness of Lgr5+ stem cells through Smad-mediated transcriptional repression of a large number of stem cell signature genes, including Lgr5, and this effect is independent of Wnt/β-catenin signalling. Smad1/Smad4 recruits histone deacetylase HDAC1 to the promoters to repress transcription, and knockout of Smad4 abolishes the negative effects of BMP on stem cells. Our findings therefore demonstrate that epithelial BMP constrains the Lgr5+ stem cell self-renewal via Smad-mediated repression of stem cell signature genes to ensure proper homeostatic renewal of intestinal epithelium.
منابع مشابه
Heterogeneity of the Level of Activity of Lgr5+ Intestinal Stem Cells
Intestinal stem cells (ISCs) are a group of rare cells located in the intestinal crypts which are responsible for the maintenance of the intestinal homeostasis and intestinal regeneration following injury or inflammation. Lineage tracing experiments in mice have proven that ISCs can repopulate the entire intestinal crypt. It is noteworthy that in such experiments, only a subset of intestinal cr...
متن کاملCluster microRNAs miR‐194 and miR‐215 suppress the tumorigenicity of intestinal tumor organoids
Tumor stem cells with self-renewal and multipotent capacity play critical roles in the initiation and progression of cancer. Recently, a new 3-D culture system known as organoid culture has been developed, allowing Lgr5-positive stem cells to form organoids that resemble the properties of original tissues. Here we established organoids derived from intestinal tumors of Apcmin/+ mice and normal ...
متن کاملLGR5 Is a Gastric Cancer Stem Cell Marker Associated with Stemness and the EMT Signature Genes NANOG, NANOGP8, PRRX1, TWIST1, and BMI1
BACKGROUND Accumulating evidence supports the hypothesis that cancer stem cells (CSCs) are essential for cancer initiation, metastasis and drug resistance. However, the functional association of gastric CSC markers with stemness and epithelial-mesenchymal transition (EMT) signature genes is unclear. METHODS qPCR was performed to measure the expression profiles of stemness and EMT signature ge...
متن کاملThe Lgr5 intestinal stem cell signature: robust expression of proposed quiescent '+4' cell markers.
Two types of stem cells are currently defined in small intestinal crypts: cycling crypt base columnar (CBC) cells and quiescent '+4' cells. Here, we combine transcriptomics with proteomics to define a definitive molecular signature for Lgr5(+) CBC cells. Transcriptional profiling of FACS-sorted Lgr5(+) stem cells and their daughters using two microarray platforms revealed an mRNA stem cell sign...
متن کاملCancer Stemness in Apc- vs. Apc/KRAS-Driven Intestinal Tumorigenesis
Constitutive activation of the Wnt pathway leads to adenoma formation, an obligatory step towards intestinal cancer. In view of the established role of Wnt in regulating stemness, we attempted the isolation of cancer stem cells (CSCs) from Apc- and Apc/KRAS-mutant intestinal tumours. Whereas CSCs are present in Apc/KRAS tumours, they appear to be very rare (<10(-6)) in the Apc-mutant adenomas. ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 8 شماره
صفحات -
تاریخ انتشار 2017